二阶函数可微的充分条件
二元函数可微的条件
1、二元函数可微的必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。
2、二元函数可微的充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在且均在这点连续,则该函数在这点可微。
3、多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。
4、设平面点集D包含于R^2,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。
二元函数可微的充分必要条件是什么
二元函数f(x,y)在某点(x0,y0)可微的充分必要条件是:函数f(x,y)在点(x0,y0)处的偏导数连续且偏导数f'x(x0,y0)、f'y(x0,y0)都存在。可微的定义如下:设函数y=f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x=x0时,则记作dy∣x=x0。
可微的充分条件是什么意思
1、可微的必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
2、可微的充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
谢谢
可微是连续的充分条件吗
可微分是连续的充分条件。全微分于某点存在的充分条件是函数在该点的某邻域内存在所有偏导数,且所有偏导数于此点连续。全微分于某点存在的必要条件:该点处所有方向导数存在。偏导数存在且连续是可微的充分不必要条件条件。
函数可微的条件是什么:对于一元函数而言,可微必可导,可导必可微,这是充要条件;对于多远函数而言,可微必偏导数存在,但偏导数存在不能推出可微,而是偏导数连续才能推出可微来,这就不是充要条件了。
要证明一个函数可微,必须利用定义,即全增量减去(对x的偏导数乘以x的增量)减去(对y的偏导数乘以Y的增量)之差是距离的高阶无穷小,才能说明可微。
如何判断一个函数可微
1.一元函数,可导必可微,可微必可导,两者是充要条件。
2.多元函数,如果一个函数的所有偏导数在某点的邻域内存在且连续,那么该函数在该点可微
形式上,一个多元实值函数f:R→R在点x0处可微,如果存在线性映射J:R→R满足
可微是可导的什么条件
可微条件
必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
可导条件
充分必要条件:函数可导的充要条件:函数在该点连续且左导数、右导数都存在并相等。
函数可导与连续的关系:
定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
还没有评论,来说两句吧...